Intracellular targeting of copper-transporting ATPase ATP7A in a normal and Atp7b-/- kidney.

نویسندگان

  • Rachel Linz
  • Natalie L Barnes
  • Adriana M Zimnicka
  • Jack H Kaplan
  • Betty Eipper
  • Svetlana Lutsenko
چکیده

Kidneys regulate their copper content more effectively than many other organs in diseases of copper deficiency or excess. We demonstrate that two copper-transporting ATPases, ATP7A and ATP7B, contribute to this regulation. ATP7A is expressed, to a variable degree, throughout the kidney and shows age-dependent intracellular localization. In 2-wk-old mice, ATP7A is located in the vicinity of the basolateral membrane, whereas in 20-wk-old mice, ATP7A is predominantly in intracellular vesicles. Acute elevation of serum copper, via intraperitoneal injection, results in the in vivo redistribution of ATP7A from intracellular compartments toward the basolateral membrane, illustrating a role for ATP7A in renal response to changes in copper load. Renal copper homeostasis also requires functional ATP7B, which is coexpressed with ATP7A in renal cells of proximal and distal origin. The kidneys of Atp7b(-/-) mice, an animal model of Wilson disease, show metabolic alterations manifested by the appearance of highly fluorescent deposits; however, in marked contrast to the liver, renal copper is not significantly elevated. The lack of notable copper accumulation in the Atp7b(-/-) kidney is likely due to the compensatory export of copper by ATP7A. This interpretation is supported by the predominant localization of ATP7A at the basolateral membrane of Atp7b(-/-) cortical tubules. Our results suggest that both Cu-ATPases regulate renal copper, with ATP7A playing a major role in exporting copper via basolateral membranes and protecting renal tissue against copper overload.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular targeting of copper-transporting ATPase ATP7A in a normal and Atp7b

Rachel Linz,* Natalie L. Barnes,* Adriana M. Zimnicka, Jack H. Kaplan, Betty Eipper, and Svetlana Lutsenko Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois; and Department of Neuroscience, University of Connecticut Health Center, Farmington, Conne...

متن کامل

Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease.

We have analyzed the functional effect of site-directed mutations and deletions in the copper-binding domain of ATP7B (the copper transporting P-type ATPase defective in Wilson disease) using a yeast complementation assay. We have shown that the sixth copper-binding motif alone is sufficient, but not essential, for normal ATP7B function. The N-terminal two or three copper-binding motifs alone a...

متن کامل

Function and regulation of human copper-transporting ATPases.

Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B are evolutionarily conserved polytopic membrane proteins with essential roles in human physiology. The Cu-ATPases are expressed in most tissues, and their transport activity is crucial for central nervous system development, liver function, connective tissue formation, and many other physiological processes. The loss of ATP7A or ATP7B fun...

متن کامل

Role of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B.

The copper-transporting P-type ATPases (Cu-ATPases), ATP7A and ATP7B, are essential for the regulation of intracellular copper homeostasis. In this report we describe new roles for glutathione (GSH) and glutaredoxin1 (GRX1) in Cu homeostasis through their regulation of Cu-ATPase activity. GRX1 is a thiol oxidoreductase that catalyzes the reversible reduction of GSH-mixed disulfides to their res...

متن کامل

Critical roles for the COOH terminus of the Cu-ATPase ATP7B in protein stability, trans-Golgi network retention, copper sensing, and retrograde trafficking.

ATP7A and ATP7B are copper-transporting P-type ATPases that are essential to eukaryotic copper homeostasis and must traffic between intracellular compartments to carry out their functions. Previously, we identified a nine-amino acid sequence (F37-E45) in the NH(2) terminus of ATP7B that is required to retain the protein in the Golgi when copper levels are low and target it apically in polarized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 294 1  شماره 

صفحات  -

تاریخ انتشار 2008